
Chiral matrix model for QCD

“Semi” QGP: in QCD, near the chiral phase transition, T: 130 -> 300 MeV

1. Chiral matrix model

2. Suppression of color 

3. Dilepton production: unsuppressed

4. Photon production: strongly suppressed

5. Shear viscosity: strongly suppressed



The Quark-Gluon Plasma near Tc

T = 0 to T ~ 130 MeV: hadronic resonance model, χ perturbation theory….

T> 300 MeV: resum perturbation theory
                  Hard Thermal Loop perturbation theory at three loop order

                           Haque, Bandyopadhyay, Andersen, Mustafa, Mike Strickland, Nan Su, 1402.6907

But: in heavy ion collisions, most time is spent near Tc.

Assume Bjorken hydrodynamics: in the central plateau, 

Tf = 160 MeV.  RHIC, Ti = 400 MeV.  LHC, Ti = 600 MeV.  

In Bjorken hydro,  as                                               = 215 @ RHIC;  = 227 @ LHC

T ⇠ 1

⌧1/3

Ti ! 1 , hT i ! 3

2
Tf



Chiral matrix model for QCD



Chiral symmetry

Lqk = q 6D q = qL 6D qL + qR 6D qR , qL,R =
1± �5

2
q

For 3 flavors of massless quarks coupled to a gauge field,

qL ! e�i↵/2 UL qL , qR ! e+i↵/2 UR qR

Classically, global flavor symmetry of SU(3)L x SU(3)R x U(1)A,

Simplest order parameter for χ symmetry breaking (χSB’g):
                                                a,b… = flavor.  A,B… = color

Quantum mechanically, axial U(1)A is broken by instantons +…. to Z(3)A  at T=0
’t Hooft instanton vertex is invariant under Z(3)A:

As T → ∞, U(1)A approximately restored as 1/T7 →9.

�ab = q bA
L qaAR

� ! e+i↵ UR � U†
L

det� ! e3i↵ det�



Effective Lagrangians for chiral symmetry

Standard linear sigma model for Φ:

Drop (tr Φ+Φ)2.  Mass, quartic terms U(1)A  invariant, det Φ under Z(3)A .
For light but massive quarks, need to add

Lqk
� = q

�
6D + µ �0 + y

�
�PL + �† PR

��
q

Quarks generate potential in “q”, so must couple Φ to quarks: PL,R = (1 ± γ5)/2

V0
H = � tr

�
H

�
�† + �

��

Use non-perturbative potential from pure glue theory, with same Td = 270.
But with quarks, Td is just a parameter in a potential, not deconfining Tc.

Similar to Kovacs, Szep, Wolf, 1601. 05291; they add vector mesons.

V� = m2 tr
�
�†�

�
� cA (det�+ c.c.) + � tr

�
�†�

�2



New logarithmic terms

Assume χSB’g occurs, ⟨Φ⟩ = φ, so m = y φ.  

At T = 0, u.v. divergent terms in 4 - ε dim.s:
M = renormalization mass scale

3m4
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Need to add new logarithmic term in Φ:

V log
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To 1 loop order, κ = 3y4/(16 π2); we keep it as a free parameter.

In practice, log term complicates the computation, but does not signficantly
alter the conclusions from κ = 0.



New symmetry breaking term

Ve↵ ⇡ �h�+
1

12
y2 T 2 �2 + . . . , T ! 1

With just usual symmetry breaking term,
at high T,

The first is SB’g, the second from fermion fluctuations.  
But then there is no symmetry breaking at high T,

� ⇠ 12h

y2T 2
, mqk ⇠ y� ⇠ 1

T 2

Solve by adding a new temperature dependent term by hand

Ve↵ ⇡ �h�� y

6
m0 T 2�+

1

12
y2 T 2 �2 + . . .

So φ ~ m0/y at high T, mqk ~ m0.  In QCD, need to be bit more clever,

VT
h = � mqk

V

 
tr

1

6D + µ �0 + y�ii

����
T 6=0

� (T = 0)

!
.



Solution at T = 0
Consider first the SU(3) symmetric case, hu = hd = hs.  
Spectrum. 0-: singlet η’ & octet  π.  0+: singlet σ and octet a0.
Satisfy a ’t Hooft relation:

m2
⌘0 �m2

⇡ = m2
a0

�m2
�

The anomaly moves η’ up from the π, but also moves σ down from the a0!

QCD: ⟨Φ⟩ = (Σu, Σu, Σs).  From:

f⇡ = 93 , m⇡ = 140 , mK = 495 , m⌘ = 540 , m⌘0 = 960

⌃u = 46 , ⌃s = 76 , hu = (97)3 , hs = (305)3 , cA = 4560

m2 = (538)2 � 121 y4 ; � = 18 + 0.04 y4

Determine:  

Leaves one free parameter, Yukawa coupling “y”.  Determine from Tχ.



Solution at T ≠ 0
To eliminate u.v. divergences, 
lattice uses substracted condensates

In our model we use analogous quantity
to fix y = 5.  

���M
u,s (T ) =

⌃u(T )� (hu/hs)⌃s(T )

⌃u(0)� (hu/hs)⌃s(0)

�lattice
u,s (T ) =

hqqiu,T � (mu/ms)hqqis,T
hqqiu,0 � (mu/ms)hqqis,0
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Varying the Yukawa coupling
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Meson masses vs T

T→

Usual pattern for mu = md ≠ ms.  y = 5.
U(1)A breaking persists to high T, unphysical.



Pressure, interaction measure vs T

0 100 200 300 400 500

T

0

1

2

3

4

5

p/
T

4

�-M

HTL

LQCD

0 100 200 300 400 500

T

0

1

2

3

4

5

(✏
�
3p
)/
T

4

�-M

HTL

LQCD

T→

T→

p/T4↑

(e-3p)/T4↑

Pressure and 
interaction measure, (e-3p)/T4, 
versus Lattice, Bazavov et al, 1407.6387
and Hard Thermal Loop (HTL)
      (blue region = change ren. scale)
Andersen et al, 1511.04660



Order parameters, chiral and deconfining
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Chiral matrix model:

Chiral and deconfining order parameters
are strongly correlated

But Polyakov loop from lattice
Petreczky & Schadler, 1509.07874  
is much smaller than in model.

Persistent discrepancy, as in pure gauge.
To us: what’s wrong with lattice loop? 



Susceptibilities, chiral and deconfining
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T→

← up-up

← loop-up

← loop-antiloop
up-up→

Largest peak for up-up; strange-strange small.
In QCD, notable peaks for loop-up & loop-loop, strongly correlated with up-up

In chiral limit: loop-up suscep. diverges.  Sasaki, Friman, Redlich ph/0611147
                             loop-loop and loop-antiloop finite



Baryon susceptibilities: 2nd & 4th

�B
n (T ) = Tn�4 @n

@µn
B

p(T, µB)

����
µB=0
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As evaluated at μ = 0, lattice ok.
Baryon μB = 3 μq.

Lattice: Bazavov et al, 1701.04325



6th order baryon susceptibility
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In our model, χ6 shows non-monotonic behavior near Tχ.
In HTL,  χ6 is very small (because m=0)
σ model: including change in Σu, but not in loop. Change in χ6 much smaller.
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Left: ratio of χ4/χ2 and χ6/χ2 in model



What’s up with the lattice loop?
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Looked at wide variety of possible models.  
Below: χ2 from chiral matrix model, lattice, 
       and fitting the loop to the lattice value, then computing χ2.
If the lattice loop is right, then χ2 is too small.

Lattice loop:
Petreczky & Schadler, 
1509.07874  



Suppression of color in the semi-QGP



Suppressing color in the semi-QGP

Statistical distribution functions those for imaginary chemical potential:

Qa =
2⇡T

3
q(T ) (1,�1, 0)

For three colors,  color chemical potential:

When Q ~ T, the only soft gluons have Qa = Qb: diagonal elements.

For N colors: ~ N2 off-diagonal gluons, and ~ N diagonal gluons

In the semi-QGP, soft gluons are suppressed by 1/N.

ena(E) =
1

e(E�iQa)/T + 1
nab(E) =

1

e(E�i(Qa�Qb))/T � 1



Suppression of color near Tc

Consider energetic particles, E ⟫ T, Boltzmann statistics

ena(E) ⇠ e�(E�iQa)/T nab(E) ⇠ e�(E�i(Qa�Qb))/T

While the n(E)’s are complex, sums over color are real.  
Polyakov loop: ` =

1

N

NX

a=1

eiQ
a/T

Summing over color, 

1

N

NX

a,b=1

enab(E) = e�E/T `2
1

N

NX

a=1

ena(E) = e�E/T `

Near Tc, where loop small, quarks suppressed by loop; gluons by loop squared.



Dileptons: unsuppressed



Hard dileptons: same!

Dileptons: off shell photon goes to quark anti-quark pair.
Consider dileptons back to back, total momentum = 0.

Diagrams same, only the distribution functions change.

So Qa’s drop out: # dileptons identical in deconfined and confined phases!

X

a

ena(E)en�a(E) ⇠ e�(E � iQa)/T e�(E + iQa)/T = e�2E/T

(Imaginary) chemical potential: sign of Qa flips between q and q bar.  
Large E: with Boltzmann statistics,

en�a(E) =
1

e(E+iQa)/T + 1
ena(E) =

1

e(E�iQa)/T + 1



Soft Dileptons: more in confined phase

High T: Qa=0.  As E → 0, # dileptons: 
Fermi-Dirac dist. fnc. finite at E = 0. en(0)2 ⇠ 1

4

In the confined phase, Polyakov loop = 0, find amazing identity: 

More dileptons in the confined phase!
Confined phase only in the pure gauge theory, but interesting point of principle.

“Statistical confinement”: quark anti-quark forms “boson”, 
which exhibits Bose-Einstein enhancement.  But no dynamics of confinement.

N.B.: in dynamical quasi-particle model, as T → Tc quarks heavier,
          but width increases, so also obtain enhanced dilepton rate.

1

N

NX

a=1

ena(E) en�a(E) ⇠ n(E) =E!0
T

E



Dileptons

Explicitly, we computed the diagram:
Here, propagators with hatched dot are 
just p0 → p0 - i Qa.  Very straightforward

→

f`` = 1� 2T

3 p
log

1 + 3 ` e�p�/T
+ 3 ` e�2p�/T

+ e�3p�/T

1 + 3 ` e�p+/T
+ 3 ` e�2p+/T

+ e�3p+/T

f`` = # dileptons

✓
Q 6= 0

Q = 0

◆

When Q = 0, # dileptons ~ αem.  Photon momentum = (E,p), E± = (E ± p)/2.  
Polyakov loop =      :  = 1 in the perturbative QGP, and = 0 in the confined phase.
Above factor analogous to PNJL model,

Abishek Atreya, Sarkar, Srivastava, 1111.3027, 1404.5697, & Das, 1406.7411

`



Ratio # dileptons, vs T
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Below ratio of # dileptons, vs T.  Ratio semi-QGP/perturbative QGP.
Take QCD coupling same, so only function of Qa’s, taken from the lattice.
Mild enhancement of dileptons at small E.

Lee, Wirstam, Zahed, Hansson, ph/9809440: 
Condensate in ~ ⟨A02⟩ ; equivalent to expanding to ~ ⟨Q2⟩.



Experiment: dilepton excess below the ρ

CERES/NA45, √s = 8.8 GeV/A.  
Below the ρ, QGP small, dominated by hadronic cocktail.  
Need medium broadened ρ to fit data: so need to fit semi-QGP to hadronic phase
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Where does the ρ go?
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As T→Tχ , χ symmetry ⇒ ρ and a1 spectral densities degenerate.  But how? 
Brown & Rho (PRL’91) ρ goes down.  RDP, ph/9503328: ρ goes up.

Holt, Hohler, & Rapp, 1210.7210: ρ and a1 peaks don’t move, just broaden: ?

s→
s→

a1 spectral density↓

Ayala, Dominguez, Loewe, Mizher, Zhang, 1210.2588, 1309.4135, 1405.2228:
find the ρ does move….down :(

ρ spectral density↑



Real photon production: strongly suppressed



Production of hard photons
Photon on the mass shell cannot go to quark anti-quark; must also emit a gluon
At leading order, two processes.  Compton scattering:

Pair annihilation:



Suppression in confined phase by 1/N2

In double line notation: diagram suppressed by loop unless 
colors of quark and anti-quark the same, a = -b :

But if a = - b, diagonal gluon, suppression of 1/N.

And, if a = -b, tracelessness of gluon implies extra factor of 1/N, or 1/N2 in all.

Similar suppression for Compton scattering.



Photon production: computation

Photon momentum “hard”, P = (E, p), E = p ≫ T.  Denote by red lines.
Internal lines can be soft, E or p ~ T; denote by blue lines.

Diagrams with one soft quark line:
Hatched blob: Qa ≠ 0
Solid blob: HTL with Qa ≠ 0
Exhibits logarithmic UV divergence, when
the soft quark line becomes hard.

Also two loops diagrams, in which all lines are hard.  
All lines below should be hatched, with Qa ≠ 0.
Exhibits logarithmic IR divergence, when the gluon line becomes soft.



Strong suppression of real photons in the confined phase

Summing soft + hard, logarithms cancel.  For hard photons, very simple result:

In the confined phase, qconf = 1/3, 
find huge suppression:

f�(Q) = # photons

✓
Q 6= 0

Q = 0

◆
= 1� 4q +

10

3

q2 ; q =

Q

2⇡T

f
�
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3N2
=

1
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Suppression is so large that it persists
even to T ~ 500 MeV.  



Landau-Pomeranchuk-Migdal
In the perturbative QGP, even at leading order in g2, LPM ⇒ need to resum an
infinite set of ladder diagrams: Arnold, Moore & Yaffe, ph/0111107, ph/0204343

Each new rung is down by g2, but for soft gluon, k ~ gT, compensated by 
Bose-Einstein enhancement times energy denominator, 

g2 n(gT )
T

ip0 � Ek + Ep�k
⇠ g2

T

gT

T

gT
⇠ 1

Semi-QGP: only soft gluons are diagonal, so LPM is suppressed by 1/N.
What we did: only 2 → 2 processes, at leading logarithmic order.
Did compute LPM correction, term is large for N = 3.



Hydrodynamics: # dileptons
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MUSIC: 3+1 hydro @ RHIC: √s = 200 GeV/A, central collisions
Preliminary analysis: only ideal hydro.

Small enhancement of dileptons in semi-QGP, swamped by hadronic phase.
No matching of semi-QGP to hadronic phase: clearly essential.
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v2↑

Hydrodynamics: dilepton v2

Since # dileptons dominated by hadrons, effect on elliptic flow, v2, small.



Hydrodynamics: # photons
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In semi-QGP, far fewer photons above Tc.  

# photons↑# photons↑

pt→



Fewer photons near Tc in semi-QGP has a big effect on the total v2. 

Tends to bias the total v2 to that in hadronic phase.  Small “dilution” by QGP.
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Hydrodynamics: photon elliptic flow, v2



PHENIX vs theory: puzzle of the “missing” photons
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Sources of photons: QGP, hadron gas, “primordial” = hard initial processes

PHENIX: more photons than expected?
At RHIC: “primordial” photons appear to dominate above pt ~ 2 GeV

⬆

van Hees, He, Rapp, 1404.2846



ALICE vs theory: puzzle of the “missing” photons
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ALICE prelim.

At LHC, “primordial” appears to dominate above pt ~ 1 GeV 
Again, experiment much larger than theory?
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van Hees, He, Rapp, 1404.2846



Hadronic contribution to photons?
Dusling & Zahed, 0911.2426
Do virial expansion, need 
Use experimental input (R, τ decay)  :
find hadronic contribution much larger than other analyses; 
Resolves puzzle of the “missing” photons?
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Shear viscosity: strongly suppressed



 Shear viscosity in the semi-QGP

η

T 3
=

#

g4 log(c/g)
R(ℓ) ; R(ℓ → 0) ∼ ℓ2

Shear viscosity, η, in the complete QGP:
Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.
Generalize to Q ≠ 0: Boltzmann equation in background field.

                  

“Strong” QGP, large coupling   S ~ 1, C ~ (coupling)2 >> 1.
  N = 4 SU(N), g2 N = N = ∞: η/s = 1/4π .  Kovtun, Son & Starinets hep-th/0405231 

Semi-QGP: small loop at moderate coupling: Pisarski & Hidaka, 0803.0453, 0912.0940

                       Pure glue: S ~ <loop>2, C ~ g4 <loop>2 
                       With quarks: S ~ <loop>, C ~ g4 

To leading log order: # from AMY, constant “c” beyond leading log

η =

S2

C
S = source, C = collision term.  Two ways of getting small η:

Both: η ~ <loop>2



 Counting powers of <loop> = l → 0

X
S ∼ ℓ

X
S ∼ ℓ

2

∼ e
+iQa/T

∼ e
−iQa/T

C ∼ ℓ
2

C ∼ 1



 Small shear viscosity from color evaporation
R = ratio of shear viscosity in semi-QGP/complete-QGP at same g, T.
Two different eigenvalue distributions give very similar results!

When <loop> ~ 0.3, R ~ 0.3.

ℓ →

R(ℓ) ↑

∼ ℓ
2
→

←Cusp near 1:
smoothed out
by Q ~ g T?

Nf = 0 →

← Nf = N



 Shear viscosity/entropy
Leading log shear viscosity/lattice entropy.  αs(Tc) ~ 0.3.
Large increase from Tc to 2 Tc.  Clearly need results beyond leading log.  
Also need to include: quarks and gluons below Tc, hadrons above Tc.  Not easy.
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